
CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

The Level 3 Event Receiver 3.6
Stephen Tether
28 April 2000

(I) Interface with the rest of the converter node code
The initial reception of events from Scanner CPUs takes place quasi-independently of the rest of the
converter node code, although it runs on the same machines. The header file and function prototypes
described below form the sole interface between the two systems (beside the packet buffers, of
course). The idea is to keep the interface as "narrow" as possible, to simplify understanding (and
debugging). The event receiver library must be linked into the converter node module whose
responsibility is reception.

The Run 2 implementation of the receiver package is multi-threaded, using multiple tasks under
VxWorks and POSIX threads under UNIX or Linux. The receiver threads share the address space,
open files, etc., of the process that uses this interface. In particular, for every buffer managed by this
package, N network connections will be established, where N is the number of Scanner CPUs in the
event builder; therefore make sure your program will be allowed to obtain all the required resources
(e.g., file descriptors).

ATM under VxWorks
The VxWorks systems in the CDF event builder at B0 use Interphase model 4515 ATM-PMC
adapters. VPI and VCI information is sent in structures meant for TCP/IP addresses (struct
sockaddr_in). Special names ending in "-a" have been added to the network host table in each
machine. These names are given "IP" addresses which are really VPI numbers. VCI numbers play
the same role as TCP port numbers, and are set inside the receiver package; just use 0 for port
numbers passed to the package. VxWorks C code to fill in an ATM network address will look like
this:

#include "netinet/in.h" /* For struct sockaddr_in */

#include "hostLib.h" /* For hostGetByName() */

• • •

struct sockaddr_in netaddr;

• • •

netaddr.sin_port = 0;

netaddr.sin_addr.s_addr = hostGetByName("xxxxxx-a");

At present ATM is used only for event transmission and not for transmitting startup information; that
always goes by the usual LAN.

Page 1

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

Ethernet, FDDI, or other LAN
The Scanner Manager, L3 receiver package, and Scanner CPUs exchange startup information over
the LAN (usually Ethernet) via TCP/IP. Again, the receiver package will set port numbers itself, so
you should set these to zero. You can also use a LAN for event transmission if you're performing
tests on a Linux/GNU workstation (with Scanner Manager and Scanner CPU code compiled with the
appropriate options). LAN addresses in sockaddr_in structures are obtained in the usual way
defined for host. The only potential trouble with using TCP/IP for event transmission is that the
boundaries between transmissions on the same connection are not preserved; the receiver only sees a
continuous stream of bytes. To get around this the event builder’s I/O code creates simulated
packets by writing a 32-bit byte count (big-endian) before the contents of the “packet” itself. It does
this only when compiled for TCP/IP.

receiver.h
#include "receiver.h"

Contains prototypes for the functions described below and the definitions of the return code
constants.

set_receiver_timeout()
void set_receiver_timeout(int number_of_tries, int try_interval)

This function may be called at any time, even before init_receiver() (which is recommended).
It sets a deadline starting from the arrival of an Event Complete message from the Scanner Manager.
All fragments for the given event must arrive within the deadline, which is number_of_tries *
try_interval / 3 milliseconds long. A test for arrival will be repeated every try_interval / 3
milliseconds before the deadline. If you don’t call set_receiver_timeout() the receiver
package will use a default timeout that will probably be too short.

init_receiver()
int init_receiver(int nbldr , void *buffaddr[] , int nbuff, int

partition , int nl3 , struct sockaddr_in l3addr[] , struct sockaddr_in

smaddr, void* scramnet_addr, int first_connection_id)

Sets up the event-receiver package. This function is meant to be called by the converter node after a
the partition the receiver will serve has been defined in the event builder. nbldr is the number of
Builder objects to create. buffaddr[] is an array of pointers to packet buffers. nbuff is the number of
buffers allocated (and the number of elements in buffaddr[]). partition is the number of the
partition for which this receiver will be working (numbering starts at zero). nl3 is the total number
of converter nodes in the partition and l3addr[] contains their event transmission network addresses.

Page 2

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

smaddr gives the LAN address for the Scanner Manager. scramnet_addr is the base address of the
SCRAMNet module to use (as mapped into the address space of the process). first_connection_id
should normally be -1. Other values are used during debugging to change the port or VCI numbers
used for event transfers.

Unlike previous versions of the receiver package, this version treats each buffer as the container for
one network packet, rather than one event. There is no dividing up of big buffers for events into
smaller ones for fragments. You can still allocate your buffers in contiguous clusters and pass the
individual addresses to init_receiver() , but there is no guarantee that all the buffers used for
an event will lie in the same cluster. The buffer size should be the maximum packet size

MAX_FRAGMENT_PACKET_SIZE defined in evbLimits.h in the cdfevb_sm package. This is
50K for ATM. The test for buffer overlap assumes that all buffers are exactly this size.

The L3 configuration information represented by partition, nl3, and l3addr isn't used by the
receiver itself but is passed to the Scanner Manager via the LAN. Since every converter node must
call init_receiver() to enable its own event reception, the start-up of a partition with N
converter nodes will send this information N times to the Scanner Manager. For each different
partition number the SM will take the copy which arrives first and will ignore the others (save for
some simple consistency checks).

After setup is complete, LAN network links are closed and messages are passed between the receiver
package and the Scanner Manager via a reflective memory network.

Preconditions
(1) The receiver package has not been initialized since the last time (if any) that

kill_receiver() was called.

(2) The Scanner Manager and Scanner SCPUs must have performed Grand Init for the partition you
want to use.

(3) Buffers do not overlap.

(4) The buffers are readable and writable.

(5) Every buffer is exactly MAX_FRAGMENT_PACKET_SIZE bytes long.

Postconditions
(1) The next call to test_next_event() or wait_next_event() will work properly.

Page 3

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

(2) The Builders and Boss for this converter node have been constructed and they have been
registered with the Scanner Manager.

(3) Connections to the SCPUs have been made over the event transmission network.

(4) The appropriate regions of reflective memory have been found and are initialized.

Returns

RECV_SUCCESS.

RECV_TOOMANY. Too many buffers were specified.

RECV_OVERLAP. Buffers overlapped.

RECV_BAD_VALUE. One of the arguments had an absurd value, such as nbuff < 0.

RECV_ALREADY_INITIALIZED .

RECV_FAILURE. Anything not covered by the above. A message will have been printed on the
standard error file.

test_next_event()
int test_next_event(recv_event_token* new_event)

Checks whether a new event is available. Returns immediately. A recv_event_token is a
structure defined in receiver.h as follows

typedef struct {

 int builder_id;
 unsigned long scanner_mask;
 unsigned long tardy_mask;
 unsigned long taginfo[2];
 int firstPacket[MAX_SCANNERS];

 packetInfo packet[MAX_PACKETS_PER_EVENT];

} recv_event_token;

Page 4

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

typedef struct {

 void* address;

 int numBytes;

 int hasHeader;

 int next;

} packetInfo;

where MAX_SCANNERS and MAX_PACKETS_PER_EVENT are defined in evbLimits.h of the
Scanner Manager package. MAX_PACKETS_PER_EVENT is set to allow a maximum event size of
about 5 MB. Never modify the contents of an event token.

Preconditions
(1) init_receiver() has been called, it succeeded, and kill_receiver() hasn't been
called since then.

Postconditions
(1) If an event is available, RECV_SUCCESS is returned and information about the event is placed
in *new_event. That information is

(a) The ID no. of the Builder that received the event,
(b) A bit mask showing which Scanner CPUs contributed to the event,
 (c) A bit mask showing which SCPUs should have contributed but didn't,
(d) Two taginfo words, which count the number of commands received from the Scanner Manager
(index 0) and the sequence number of the event in the current run (index 1),
(e) Each fragment (contribution from one SCPU) is described as a singly-linked list inside packet[].
The entry for the first packet received for fragment i is at the index given by firstPacket[i]. The
next field of each entry contains the index for the entry of the next packet received for the fragment.
For both firstPacket[] and next the role of the null pointer is played by -1. If the value of
firstPacket[i] is -1, then bit i of scanner_mask is zero, and vice versa. Each entry of packet[] gives
the address of the buffer, the number of bytes received from the SCPU for the buffer, and a flag
telling whether an SCPU fragment header was detected at the beginning of the packet. For each
chain of packets the first and only the first packet ought to contain the SCPU header. The structure of
the SCPU header is defined in fragment.h (type fragmentHeader).

Page 5

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

The following example C code finds all the packets for an event and does just a little error checking.

recv_event_token *t;

int f, p;

for (f = 0; f < MAX_SCANNERS; f++) {

 p = t->firstPacket[f];

 if (p != -1 && !t->packet[p].hasHeader) {

 printf(“Warning. First packet of fragment %d doesn’t have “

 “SCPU header.\n”, f);

 }

 while(p != -1) {

 processPacket(t->packet[p].address, t->packet[p].numBytes);

 p = t->packet[p].next;

 }

}

Bit masks: mask & (1 >>i) != 0 if and only if SCPU i is included.

If the preconditions are not met, or there is no event, a value other than RECV_SUCCESS is
returned and the builder ID will be set to -1. Nothing else about the contents of the event token is
guaranteed in this case.

Returns

RECV_SUCCESS.

RECV_NO_EVENT.

RECV_NOT_INITIALIZED.

wait_next_event()
int wait_next_event(recv_event_token* new_event)

Waits indefinitely for a new event. Otherwise behaves like test_next_event() .

release_event()
int release_event(recv_event_token* new_event)

Makes an event buffer available again after the event it contains is no longer needed.

Page 6

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

Preconditions
(1) init_receiver() has been called, it succeeded, and kill_receiver() hasn't been
called since then.

(2) The event token contents were set by a successful call to wait_next_event() or

test_next_event() and have not yet been used with release_event() .

Postconditions
(1) The release request is queued.

Returns

RECV_SUCCESS.

RECV_BAD_BUILDER_ID. The builderId field of the event token is not between 0 and nbldr-1,
where nbldr is the number of Builders argument given to init_receiver() .

RECV_NOT_INITIALIZED.

get_receiver_stats()
void get_receiver_stats(receiver_stats *)

Fills a receiver_stats structure with the values of a few counters. The counters are no longer
available as global external variables. The definition of receiver_stats in receiver.h is

typedef struct {

 int l3get;

 int l3free;

 int l3late;

 int l3ioerr;

} receiver_stats;

l3get is the number of times a buffer has been allocated to hold a packet coming in over the event
network. l3free is how often such buffers have been released into the pool of empty buffers after the
contents have been sent to Level 3 or discarded. l3late is the number of fragments that have arrived
from SCPUs after the deadline set by set_receiver_timeout() . l3ioerr counts the number of
packet I/O errors for the event network. The counters are not reset by kill_receiver() or

init_receiver() .

Page 7

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

kill_receiver()
int kill_receiver(void)

Destroys all the receiver threads and the resources used to manage them. Connections to the event
transmission network are closed. Buffers are not altered.

Preconditions
(1) init_receiver() has been called, it succeeded, and kill_receiver() hasn't been
called since then.

Returns

RECV_SUCCESS.

RECV_NOT_INITIALIZED.

Page 8

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

(II) Outline of the internal workings
This is an outline of the internal structure of the event receiving package for the Level 3 converter
nodes. The description is in terms of objects, even though the receiver package is written in a
standard procedural language (C). For the purposes of this outline, “object” means a collection of
data and related routines that operate on the data. “Data” is interpreted loosely to include threads and
network links. The term “network link” may mean a BSD-like socket, a VPI/VCI combination, or
any other means of specifying a connection.

Two major types of objects act together to receive events. Builders control the flow of information
into and out of packet buffers, and Builder Bosses tell Builders what to do and communicate with
the Scanner Manager and the rest of the converter node. Each converter node has one Builder Boss
and a team of several Builders.

A Builder is essentially an intelligent reception point, one that knows how to communicate with the
Scanner CPUs and the Builder Boss. Scanner CPUs don’t know about converter nodes, but send
their data to network links belonging to Builders, which have threads waiting to put data into the
Builder buffers. The Scanner Manager tells the Scanner CPUs the network addresses (and port
numbers if applicable) of the destinations.

Builder
Instead of simple buffers, each converter node maintains a number of Builder objects which mimic
event-builder machines with a capacity of one event each. A Builder also has one network link for
each Scanner CPU, with the connection being established during creation, or, if applicable, a pre-
defined permanent connection will be used. We don't plan to use connectionless network services.
When a Scanner CPU transfers a fragment, the destination it specifies is a Builder’s network link.
When data is detected coming in on a link, it is placed in a packet buffer which is then attached to the
Builder.

A Builder has:
(1) link, a table of network links, each connected to a different Scanner CPU,
(2) off, a table of the buffer offsets (one per link),
(3) log, a network log,
(4) copy, a set of threads waiting for data from the links,
(5) lock, a semaphore controlling access to the Builder’s data,
(6) scanners, a bit mask showing which Scanners have sent data for the current event.

A Builder can:
(1) be created,
(2) be destroyed,

Page 9

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

(3) start waiting for data from its links,
(4) stop waiting for data,
(5) print its connection log using a given file descriptor,
(6) return its scanner mask.

boss is supplied by the thread creating the Builder. Also supplied is a list of Scanner network IDs,
used to create the entries of link and so form a network connection with each Scanner. The other
variables and the copy threads are created at this time but not allowed to start execution. scanners
is set to zero, the network log is empty.

Each thread copy[i] is an endless loop waiting for data using link[i]:

do while (1) {

 count = receive a transmission on link[i] into some free packet buffer ;

 If (count > fragsize) {Report an error to boss ;}

 take(lock);

 update log ;

 set bit i in scanners ;

 attach the buffer to the Builder;

 give(lock);

}.

Other threads must be locked out when the network log and scanner mask are updated because all of
the Builder’s threads share one instance of each. Also, the Builder can receive commands from the
Builder Boss to dump the log, so that function has to use the lock as well. All the copy threads are
always active once the Builder has been created, which makes it the responsibility of the Builder
Boss and Scanner Manager to make sure that data is transmitted on the correct network links.

Destroying a Builder means killing the copy threads, closing all the links, and deallocating the other
Builder variables.

Builder Boss
This object maintains two sets of Builders. One set contains Builders which have finished receiving
event data and which have been passed to the rest of the converter node (unavailable), and another
set contains those Builders which are ready to receive new events and may already be doing so.
(available). The Builder Boss manipulates the sets according to commands received from the
Scanner Manager and the rest of the converter node.

Page 10

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

A Builder Boss has:
(1) available, a set of Builders,
(2) unavailable, a set of Builders,
(3) all, a list of Builder pointers used to find the Builders no matter which set they’re in,
(4) smAddr, the network address of the Scanner Manager,
(5) log, a log of messages sent to and received from the Scanner Manager,
(6) globalID[] , the set of ID number for the Builders (assigned by the Scanner Manager).

A Builder Boss can:
(1) be created,
(2) be destroyed,
(3) move a Builder from one set to another,
(4) send, to a given file descriptor, a list of which Builders are in which sets,
(5) print its message log to a given file (C stdio FILE*).

A Builder Boss is created by a call to init_receiver() (see above), whose arguments give the
locations of the memory areas to be used as packet buffers for event reception. A permanent network
connection to the Scanner Manager is established (or used, if permanent). The Scanner Manager is
informed of the number of Builders created and assigns a block of Builder ID numbers, sending
them back to the converter node. These Builder ID numbers are just simple integers used in error
messages and in communications between the Builder Boss and the Scanner Manager. The SM also
sends the converter node the list of Scanner CPU addresses on the event transmission network. Each
Builder is then created (see above) and placed in the available set. The unavailable set is empty.
A report is sent back to the Scanner Manager about any Builders which can’t connect to all of the
Scanners.

If all has gone well, the Builder Boss sends the Scanner Manger one message for each Builder on the
available set, each message containing the Builder’s ID number. Then the Builder Boss enters a
loop awaiting commands from the Scanner Manager. When the SM sends an “event complete”
message to the Boss, the corresponding Builder is removed from available and placed in the
unavailable set, where it stays until the converter node is finished with it (see below).

Calls to wait_next_event() or test_next_event() test for a non-empty unavailable set.
When they find one, the buffer index and scanner mask for the next Builder in that set are returned
and the entry . When release_event() is called with the corresponding Builder number the
Builder is removed from unavailable, added to available, and its ID is sent to the Scanner Manager.
In addition the packet buffers are recycled. There is no permanent association between a Builder and
a set of packet buffers.

Page 11

CDF/DOC/LEVEL-3/CDFR/1864 rev. 4

A call to kill_receiver() causes all the Builders to be destroyed, then the Builder Boss itself.

Partitions
init_receiver() is called on a converter node when Run Control has selected that node to be
part of a partition. However, the Scanner Manager does not tell the converter node which Scanner
CPUs are in the partition until the Activate transition, at which time the Scanner Manager sends a bit
mask to the Builder Bosses specifying the SCPUs. This means that normally each Builder forms a
network link to every SCPU in the entire DAQ system.

Threads
Threads are trivially implemented as tasks under VxWorks. Under UNIX, an implementation of
POSIX 1003.c threads (pthreads) is required. Solaris 2.5 and IRIX 6 have bundled pthreads packages.
For earlier versions of those operating systems, I used Chris Provenzano's freeware implementation.
See me to get a copy. At present Provenzano’s pthreads works under IRIX but not Solaris (the
Solaris version has bugs in TCP/IP networking). Under Linux/GNU, the LinuxThreads package
works well and is very close to standard pthreads. The only hitch here is that LinuxThreads uses the
USR1 and USR2 signals, which conflicts with the converter node code. Luckily, the LinuxThreads
package (now part of the standard Linux/GNU C library) contains instructions telling one how to
recompile the package to use other signals.

Page 12

